August 1, 2024

Notes et références [ modifier | modifier le code] ↑ La notion de développement limité peut se généraliser au cas où la fonction est à valeurs complexes ou vectorielles, mais ce cas n'est pas abordé dans cet article; pour d'autres généralisations, voir l'article développement asymptotique. ↑ a et b Jacqueline Lelong-Ferrand et Jean-Marie Arnaudiès, Cours de mathématiques, t. 2: Analyse, Bordas, 1977, 4 e éd., p. 148, définition IV. 7. 2; le polynôme lui-même (qui est unique s'il existe) est appelé par eux développé limité de f, et noté DL n ( f) ou, si la précision est nécessaire, DL n ( f, x 0). ↑ Pour une démonstration, voir par exemple le § « Définition » du chapitre « Développements limités » sur Wikiversité. ↑ a et b Pour une démonstration, voir par exemple le § « Somme et produit » du chapitre « Développements limités » sur Wikiversité. ↑ Un exemple est présenté dans le § « Composition » du chapitre « Développements limités » sur Wikiversité. ↑ C'est une application de la règle de L'Hôpital.

  1. Développement limité racine
  2. Développement limité de racine de 1+x

Développement Limité Racine

(1 + x) a Ces exemples sont en outre développables en séries entières. Formulaire [ modifier | modifier le code] Plusieurs fonctions usuelles admettent un développement limité en 0, qui peuvent être utilisés pour développer des fonctions spéciales: tan, où les sont les nombres de Bernoulli. cosh sinh tanh arcsin arccos arctan arsinh artanh Approximations affines: développements limités d'ordre 1 [ modifier | modifier le code] On utilise fréquemment des développements limités d'ordre 1 (encore appelés « approximations affines », ou « approximations affines tangentes »), qui permettent de faciliter les calculs, lorsqu'on n'exige pas une trop grande précision; ils sont donnés, au point x 0, par: (on retrouve l'équation de la tangente au graphe de f). En particulier, on a, au point 0: et donc et Développements usuels en 0 de fonctions trigonométriques [ modifier | modifier le code] À l'ordre 2:,,,, ces formules étant souvent connues sous le nom d' approximations des petits angles, et à l'ordre 3:.

Développement Limité De Racine De 1+X

On le démontre [ 7] par récurrence sur n, grâce au théorème ci-dessus d' « intégration » terme à terme d'un DL. L'existence d'un DL 0 en x 0 équivaut à la continuité en x 0, et l'existence d'un DL 1 en x 0 équivaut à la dérivabilité en x 0. En revanche, pour, l'existence d'un DL n en x 0 n'implique pas que la fonction soit fois dérivable en x 0 (par exemple x ↦ x 3 sin(1/ x) — prolongée par continuité en 0 — admet, en 0, un DL 2 mais pas de dérivée seconde). Quelques utilisations [ modifier | modifier le code] Le développement d'ordre 0 en x 0 revient à écrire que f est continue en x 0: Le développement limité d'ordre 1 en x 0 revient à approcher une courbe par sa tangente en x 0; on parle aussi d' approximation affine:. Son existence équivaut à la dérivabilité de la fonction en x 0. Le développement limité d'ordre 2 en x 0 revient à approcher une courbe par une parabole, ou loi quadratique, en x 0. Il permet de préciser la position de la courbe par rapport à sa tangente au voisinage de x 0, pourvu que le coefficient du terme de degré 2 soit non nul: le signe de ce coefficient donne en effet cette position (voir également l'article fonction convexe).

Astuces: Après avoir observé ces DL pendant des heures, on a finalement réussi à trouver des points communs entre toutes ces relations, ce qui peut faciliter leur apprentissage! Tout d'abord, cela n'est pas précisé sur la fiche ci-dessus, mais pour l'astuce, il est nécessaire expliciter le nom des fonctions: cos(x) correspond à la fonction cosinus, sin(x) à la fonction sinus, ch(x) à la fonction cosinus hyperbolique, sh(x) à la fonction sinus hyperbolique, e x correspond à la fonction exponentielle, ln(1+x) correspond à une fonction logarithme, 1/(1+x) à la fonction « fraction positive », 1/(1-x) à la fonction « fraction négative », √(1+x) correspond à la fonction racine carrée et enfin, √(1/(1+x)) à la fonction « fraction racine carrée ». Astuce 1: On remarque que toutes les fonctions ci-dessus, qui possèdent la lettre « a » dans leur nom, possèdent aussi le signe (-) juste après le tout premier terme, en effet c'est le cas des fonctions: log a rithme, fr a ctions, et des fonctions sinusoïd a les (cosinus et sinus).

Table Basse Hk Living