July 11, 2024

Accueil > CAP > Mathématiques > Statistiques Articles de cette rubrique Évaluation par compétences en statistiques 29 septembre 2013 Un exemple d'évaluation par compétences basée sur la nouvelle grille partant d'un tableau statistique tiré d'une étude de l'INSEE sur les inscriptions dans les différentes fédérations sportives. Auteur: Anne Éveillard Être le meilleur à FIFA 2013! 2 juillet 2013 Ce document comporte deux parties principales avec l'exploitation d'un document Excel et l'exploitation d'un document GeoGebra. L'énoncé et les explications sont sur le document Word. Le document Excel permet d'aborder les notions de statistiques, notamment: Identifier, dans une situation simple, (... Cours probabilité pdf. ) Notion de probabilité & tablette numérique 25 mars 2013 Deux applications iPad permettant d'aborder facilement la notion de probabilité en CAP. Auteur: Ronan ÉVEILLARD La ligue 1: Une étude statistique 27 janvier 2013 Une évaluation diagnostique sur les statistiques: lecture, compréhension et analyse d'un document portant sur le championnat de France de football.

Cours Probabilité Cap De La

C. F. Académie de Clermont-Ferrand - "Enquête sur les habitudes des clients d'un restaurant " C. Académie de Clermont-Ferrand - "Argent de poche"

Cours Probabilité Cap Ferret

p\left(A \cap B\right)=p\left(A\right)\times p\left(B\right). Propriété A A et B B sont indépendants si et seulement si: p A ( B) = p ( B). p_{A}\left(B\right)=p\left(B\right). Démonstration Elle résulte directement du fait que pour deux événements quelconques: p ( A ∩ B) = p ( A) × p A ( B). p\left(A \cap B\right)=p\left(A\right)\times p_{A}\left(B\right). 1. Statistiques et Probabilités. Comme A ∩ B = B ∩ A A \cap B=B \cap A, A A et B B sont interchangeables dans cette formule et on a également: A A et B B sont indépendants ⇔ \Leftrightarrow p B ( A) = p ( A) p_{B}\left(A\right)=p\left(A\right). 5. Formule des probabilités totales A 1 A_{1}, A 2 A_{2},..., A n A_{n} forment une partition de Ω \Omega si et seulement si A 1 ∪ A 2... ∪ A n = Ω A_{1} \cup A_{2}... \cup A_{n}=\Omega et A i ∩ A j = ∅ A_{i} \cap A_{j}=\varnothing pour i ≠ j i\neq j. Cas particulier fréquent Pour toute partie A ⊂ Ω A\subset\Omega, A A et A ‾ \overline{A} forment une partition de Ω \Omega. Propriété (Formule des probabilités totales) Si A 1 A_{1}, A 2 A_{2},...

Cours Probabilité Cap 1

80% des garçons et 85% des filles ont obtenu leur diplôme. On choisit un élève au hasard et on note: G G: l'événement « l'élève choisi est un garçon »; F F: l'événement « l'élève choisie est une fille »; B B: l'événement « l'élève choisi(e) a obtenu son baccalauréat ». On peut représenter la situation à l'aide de l'arbre pondéré ci-dessous: Le premier niveau indique le genre de l'élève ( G G ou F F) et le second indique l'obtention du diplôme ( B B ou B ‾ \overline{B}). On inscrit les probabilités sur chacune des branches. La somme des probabilités inscrites sur les branches partant d'un même nœud est toujours égale à 1. Résumé de cours : Probabilités sur un univers fini. 3. Probabilités conditionnelles Soit A et B deux événements tels que p ( A) ≠ 0 p\left(A\right)\neq 0, la probabilité de B sachant A est le nombre: p A ( B) = p ( A ∩ B) p ( A). p_{A}\left(B\right)=\frac{p\left(A \cap B\right)}{p\left(A\right)}. On peut aussi noter cette probabilité p ( B / A) p\left(B/A\right). On reprend l'exemple du lancer d'un dé. La probabilité d'obtenir un chiffre pair sachant que le chiffre obtenu est strictement inférieur à 4 est (en cas d'équiprobabilité): p E 2 ( E 1) = p ( E 1 ∩ E 2) p ( E 2) = 1 3. p_{E_{2}}\left(E_{1}\right)=\frac{p\left(E_{1} \cap E_{2}\right)}{p\left(E_{2}\right)}=\frac{1}{3}.

Cours Probabilité Cap D

Ces événements peuvent être représentés par un diagramme de Venn: {Diagramme de Venn} Définitions l'événement contraire de A A noté A ¯ \bar{A} est l'ensemble des éventualités de Ω \Omega qui n'appartiennent pas à A A. l'événement A ∪ B A \cup B (lire « A union B » ou « A ou B » est constitué des éventualités qui appartiennent soit à A, soit à B, soit aux deux ensembles. l'événement A ∩ B A \cap B (lire « A inter B » ou « A et B » est constitué des éventualités qui appartiennent à la fois à A et à B. Exemple On reprend l'exemple précédent: E 1 = { 2; 4; 6} E_{1}=\left\{2; 4; 6\right\} E 2 = { 1; 2; 3} E_{2}=\left\{1; 2; 3\right\} E ‾ 1 = { 1; 3; 5} \overline{E}_{1}=\left\{1; 3; 5\right\}: cet événement peut se traduire par « le résultat est un nombre impair » {Diagramme de Venn - Complémentaire} E 1 ∪ E 2 = { 1; 2; 3; 4; 6} E_{1} \cup E_{2}=\left\{1; 2; 3; 4; 6\right\}: cet événement peut se traduire par « le résultat est pair ou strictement inférieur à 4 ». {Diagramme de Venn - Union} E 1 ∩ E 2 = { 2} E_{1} \cap E_{2}=\left\{2\right\}: cet événement peut se traduire par « le résultat est pair et strictement inférieur à 4 ».

On appelle système complet d'événements de $\Omega$ toute famille finie d'événements $A_1, \dots, A_n$ vérifiant: les événements sont deux à deux incompatibles: $$\forall i, j\in\{1, \dots, n\}^2, \ i\neq j, \ A_i\cap A_j=\varnothing;$$ leur réunion est $\Omega$: $\bigcup_{i=1}^n A_i=\Omega$. Espace probabilisé fini On appelle probabilité sur l'univers $\Omega$ toute application $P:\mathcal P(\Omega)\to [0, 1]$ vérifiant $P(\Omega)=1$ et pour tout couple de parties disjointes $A$ et $B$ de $\Omega$, $P(A\cup B)=P(A)+P(B)$. Cours probabilité cap de la. Le couple $(\Omega, P)$ s'appelle alors un espace probabilisé fini. Propriétés des probabilités: $P(\varnothing)=0$; Pour tout $A\in\mathcal P(\Omega)$, $P(\bar A)=1-P(A)$; Pour tous $A, B\in\mathcal P(\Omega)$, $A\subset B\implies P(A)\leq P(B)$; Pour tous $A, B\in\mathcal P(\Omega)$, $P(A\cup B)=P(A)+P(B)-P(A\cap B)$; Pour toute famille $A_1, \dots, A_p$ d'événements deux à deux incompatibles, $$P(A_1\cup\dots\cup A_p)=P(A_1)+\dots+P(A_p). $$ Pour tout système complet d'événements $A_1, \dots, A_p$, $$P(A_1\cup\dots\cup A_p)=1.
Sirop Végétal Du Massif De Chartreuse