August 1, 2024

Question 1 Parmi les propositions suivantes, choisir en justifiant la ou les bonne(s) réponse(s): Si \(\pi \leq x \leq \dfrac{5\pi}{4}\), alors on a: \(\cos(x) \leq -\dfrac{\sqrt{2}}{2}\) \(\sin(x) \leq -\dfrac{\sqrt{2}}{2}\) Un schéma est indispensable ici!!! Tracer le cercle et placer \(\dfrac{\pi}{4}\) et \(\dfrac{5\pi}{4}\). Dérivation | QCM maths Terminale S. Pour bien placer \(\dfrac{5\pi}{4}\), il faut avoir repéré que \(\dfrac{5\pi}{4} = \dfrac{4\pi + \pi}{4} = \pi + \dfrac{\pi}{4}\). Si vous avez du mal à faire la lecture graphique, il faut passer en couleur l'arc de cercle situé entre \(\dfrac{\pi}{4}\) et \(\dfrac{5\pi}{4}\) pour un meilleur aperçu graphique. On commence par remarquer que: \(\cos(\dfrac{5\pi}{4}) = \cos(\dfrac{\pi}{4}+\pi) = -\dfrac{\sqrt{2}}{2}\) et \(\sin\left(\dfrac{5\pi}{4}\right) = \sin\left(\dfrac{\pi}{4}+\pi\right) = -\dfrac{\sqrt{2}}{2}\) Ensuite on trace le cercle trigonométrique, et on lit que: si \(\pi < x < \dfrac{5\pi}{4}\) alors: \(-1 < \cos(x) < -\dfrac{\sqrt{2}}{2}\). La proposition B est donc VRAIE.

Qcm Dérivées Terminale S Homepage

La limite en a du quotient f (x) + f (a) sur x - a existe. La limite en a du quotient x - a sur f (x) + f (a) existe. Le nombre dérivé de f en a est infini. Le nombre dérivé de f en a vaut le quotient x - a sur f (x) + f (a).

Bienvenue sur le site.

Qcm Dérivées Terminale S Charge

Exemple: Soit. On obtient en dérivant. Plus précisémenent, la dérivée de est et donc, pour obtenir finalement, il suffit de diviser par 4 et multiplier par 5, soit. Dérivation | QCM maths Terminale ES. En dérivant, on obtient bien: et est ainsi bien une primitive de. est une primitive de. Une autre primitive est tout comme Toutes les primitives de sont données par pour une constante réelle quelconque. Primitives de polynômes Propriété Une primitive de la fonction définie par, pour un entier naturel, est Pour trouver une primitive d'un polynôme, on applique la propriété précédente à chacun des termes, par exemple, pour le polynôme pour tout constante réelle.

Question 1 Quelle est sur \(\mathbb{R}\) la dérivée de la fonction définie par \(f(x) = 3x^2-7x + 5\)? \(f\) est-elle une somme de fonctions? Un produit? Quelle est la dérivée de \( x \mapsto x^2\)? et de \( x \mapsto 3x^2\) et de \( x \mapsto -7x + 5\)? La dérivée sur \(\mathbb{R}\) de la fonction \( x \mapsto x^2\) est la fonction \( x \mapsto 2x\) donc: la dérivée sur \(\mathbb{R}\) de la fonction \( x \mapsto 3x^2\) est la fonction \( x \mapsto 6x\). La dérivée sur \(\mathbb{R}\) de la fonction \( x \mapsto - 7x + 5 \) est la fonction \( x \mapsto- 7\). Par somme la dérivée de \(f\) sur \(\mathbb{R}\) est \(f'(x)= 6x - 7 \). Question 2 Quelle est sur \(]0; +\infty[\) la dérivée de la fonction définie par \(f(x) = 5\sqrt x + \large\frac{2x+4}{5}\)? Dérivabilité d'une fonction | Dérivation | QCM Terminale S. \( f'(x)= \large\frac{5}{2\sqrt x}+ \frac{2}{5}\) \( f'(x)=\large \frac{5}{2\sqrt x}+ \frac{2}{5} \normalsize+4\) \( f'(x)=\large \frac{5}{\sqrt x}+ \frac{2}{5}\) \( f'(x)=\large \frac{5}{\sqrt x}\normalsize+ 4\) \(f(x) = 5\sqrt x + \large \frac{2x}{5}+ \dfrac{4}{5}\) Quelle est la dérivée sur\(]0; +\infty[\) de \(x\mapsto \sqrt x\)?

Qcm Dérivées Terminale S Mode

\(g '(x) =\dfrac{-2}{(2x+5)^2}\) \(g '(x) = \dfrac{2}{(2x+5)^2}\) \(g '(x) =\dfrac{-1}{(2x+5)^2}\) \(g '(x) =\dfrac{1}{(2x+5)^2}\) Est-ce une somme, un produit, un inverse? L'inverse de quelle fonction? Quelle est la formule associée? \(g = \dfrac{1}{v}\) avec \(v(x) = 2x + 5\) et \(v'(x) = 2\) \(g\) est dérivable sur \(\mathbb{R}- \{\frac{-5}{2}\}\) et \(g ' = \dfrac{-v}{v^2}\) Donc, pour tout x de \(\mathbb{R}- \{\frac{-5}{2}\}\) \(g '(x) =\dfrac{-2}{(2x+5)^2}\) Question 5 Quelle est sur \(\mathbb{R}- \{\frac{-1}{3}\}\) la dérivée de la fonction définie par \(h(x) = \dfrac{2x+3}{3x+1}\)? \(h'(x) =\dfrac{-7}{(3x+1)^2}\) \(h'(x) = \dfrac{11}{(3x+1)^2}\) \(h'(x) =\dfrac{7}{(3x+1)^2}\) Est-ce une somme, un produit, un inverse, un quotient? Le quotient de quelles fonctions? Qcm dérivées terminale s homepage. Quelle est la formule associée? \(h = \dfrac{u}{v}\) avec \(u(x) = 2x + 3\) et \(v(x) = 3x+1\) Ainsi: \(u'(x) = 2\) et \(v'(x) = 3\) \(h\) est dérivable sur \(\mathbb{R}- \{\frac{-1}{3}\}\) et \(h ' =\dfrac{u'v - uv'}{v^2}\) Donc, pour tout \(x\) de \(\mathbb{R}- \{\frac{-1}{3}\}\), \(h '(x) = \dfrac{2(3x+1) – 3(2x+3)}{(3x+1)^2}\) \(h '(x) =\dfrac{6x+2 – 6x - 9}{(3x+1)^2}\) \(h '(x) =\dfrac {– 7}{(3x+1)^2}\)

Question 1: f f est la fonction définie sur R \mathbb{R} par f ( x) = x 3 − 3 x 2 3 f\left(x\right)=\frac{x^{3} - 3x^{2}}{3}. Que vaut f ′ ( x) f^{\prime}\left(x\right)? Qcm dérivées terminale s charge. f ′ ( x) = 3 x 2 − 6 x 9 f^{\prime}\left(x\right)=\frac{3x^{2} - 6x}{9} f ′ ( x) = x 2 − 2 x f^{\prime}\left(x\right)=x^{2} - 2x f ′ ( x) = x 2 − 2 x 3 f^{\prime}\left(x\right)=\frac{x^{2} - 2x}{3} Question 2: f f est la fonction définie sur R \ { 0} \mathbb{R}\backslash\left\{0\right\} par f ( x) = 1 x 3 f\left(x\right)=\frac{1}{x^{3}}. Que vaut f ′ ( x) f^{\prime}\left(x\right)? f ′ ( x) = 0 f^{\prime}\left(x\right)=0 f ′ ( x) = 1 3 x 2 f^{\prime}\left(x\right)=\frac{1}{3x^{2}} f ′ ( x) = − 3 x 4 f^{\prime}\left(x\right)= - \frac{3}{x^{4}} Question 3: f f est la fonction définie sur I =] 1; + ∞ [ I=\left]1;+\infty \right[ par f ( x) = x + 1 x − 1 f\left(x\right)=\frac{x+1}{x - 1}. Calculer f ′ f^{\prime} et en déduire si: f f est strictement croissante sur I I f f est strictement décroissante sur I I f f n'est pas monotone sur I I Question 4: C f C_{f} est la courbe représentative de fonction définie sur R \mathbb{R} par f ( x) = x 3 + x + 1 f\left(x\right)=x^{3}+x+1.
Victoire Du Sault