July 31, 2024

a) Pour montrer que la fonction logarithme népérien est concave, on utilise le signe de la dérivée seconde. b) La première inégalité demandée se déduit du résultat obtenu dans la partie A en choisissant une valeur de t pertinente. Pour obtenir la seconde inégalité, il suffit d'utiliser les règles de calcul de la fonction ln. Partie A: Caractérisation de la convexité ▶ 1. a) Déterminer les composantes d'un vecteur L'égalité B 0 M → = t B 0 A 0 → avec t ∈ 0; 1 traduit le fait que le point M est situé entre A 0 et B 0, il est donc sur le segment A 0 B 0. Les composantes du vecteur B 0 M → sont x 0 − b 0, celles de B 0 A 0 → sont a − b 0. Inégalité de convexity . On a donc x 0 − b = t ( a − b) ou encore x 0 = b + t ( a − b) = t a + ( 1 − t) b. b) Déterminer l'équation réduite d'une droite Le coefficient directeur d'une droite (AB) est donné par y B − y A x B − x A, avec A ( x A; y A) et B ( x B; y B). L'équation réduite d'une droite est de la forme y = m x + p où m est le coefficient de la droite et p est l'ordonnée à l'origine.

  1. Inégalité de convexité exponentielle
  2. Inégalité de convexité sinus
  3. Inégalité de convexité ln
  4. Inégalité de convexity

Inégalité De Convexité Exponentielle

En reprenant l'inégalité du a) avec a = a j p ∑ i = 1 n a i p ⁢ et ⁢ b = b j q ∑ i = 1 n b i q puis en sommant les inégalités obtenues, on obtient celle voulue. Exercice 8 1403 Soient x 1, …, x n des réels positifs. Établir 1 + ( ∏ k = 1 n x k) 1 / n ≤ ( ∏ k = 1 n ( 1 + x k)) 1 / n ⁢. En déduire, pour tous réels positifs a 1, …, a n, b 1, …, b n ( ∏ k = 1 n a k) 1 / n + ( ∏ k = 1 n b k) 1 / n ≤ ( ∏ k = 1 n ( a k + b k)) 1 / n ⁢. Focus sur les inégalités de convexité - Major-Prépa. Exercice 9 4688 (Entropie et inégalité de Gibbs) On dit que p = ( p 1, …, p n) est une distribution de probabilité de longueur n lorsque les p i sont des réels strictement positifs de somme égale à 1. On introduit alors l' entropie de cette distribution définie par H ⁢ ( p) = - ∑ i = 1 n p i ⁢ ln ⁡ ( p i) ⁢. Soit p une distribution d'entropie de longueur n. Vérifier 0 ≤ H ⁢ ( p) ≤ ln ⁡ ( n) ⁢. Soit q une autre distribution d'entropie de longueur n. Établir l'inégalité de Gibbs H ⁢ ( p) ≤ - ∑ i = 1 n p i ⁢ ln ⁡ ( q i) ⁢. Exercice 10 2823 MINES (MP) (Inégalité de Jensen intégrale) Soient f: I → ℝ une fonction convexe continue 1 1 1 Lorsqu'une fonction convexe est définie sur un intervalle ouvert, elle est assurément continue (voir le sujet 4687).

Inégalité De Convexité Sinus

d) En déduire que f est concave si f ( t a + ( 1 − t) b) ≥ t f ( a) + ( 1 − t) f ( b). Partie B: Applications ▶ 1. Soient f une fonction convexe sur un intervalle I et g une fonction croissante et convexe sur ℝ. Montrer que la fonction h: x ↦ g f ( x) est convexe sur I. ▶ 2. a) Montrer que la fonction logarithme népérien est concave sur 0; + ∞. b) En déduire que, pour tous a et b réels strictement positifs, on a: 1 2 ln a + 1 2 ln b ≤ ln 1 2 a + 1 2 b, puis que a b ≤ a + b 2. Partie A ▶ 1. a) Traduisez l'égalité vectorielle en utilisant l'abscisse et l'ordonnée de chacun des deux vecteurs. Pour rappel: deux vecteurs sont égaux s'ils ont les mêmes composantes. c) La convexité précise la position de la courbe par rapport à ses cordes. Un point de la courbe et d'abscisse x comprise entre a et b (exprimée en fonction de a, b, t) a une ordonnée inférieure à celle du point de même abscisse situé sur la corde. Il peut être utile de faire un schéma. Convexité - Mathoutils. Partie B ▶ 1. Traduisez la convexité de f en utilisant l'inégalité de la question 1. c), puis utilisez le fait que g est croissante sur I, donc conserve l'ordre entre les antécédents et les images.

Inégalité De Convexité Ln

$$ Théorème (inégalité des pentes): $f$ est convexe si et seulement si, pour tous $a, b, c\in I$ avec $a

Inégalité De Convexity

Soit $\mathcal{H}(n)$ la proposition: pour tout $(x_{1}, \dots, x_{n})\in I^{n}$, pour tout $(\lambda_{1}, \dots, \lambda_{n})\in[0, 1]^{n}$ tel que $\lambda_{1}+\dots+\lambda_{n}=1$, on a $f(\lambda_{1}x_{1}+\dots+\lambda_{n}x_{n})\leqslant\lambda_{1}f(x_{1})+\dots+\lambda_{n}f(x_{n})$. La proposition est trivialement vraie pour $n=1$ puisque $\lambda_{1}=1$. Inégalité de convexité sinus. La proposition est vraie pour $n=2$ par définition de la convexité. Soit $n\geqslant1$ tel que la proposition $\mathcal{H}(n)$ est vraie. Soit $(x_{1}, \dots, x_{n+1})\in I^{n+1}$ et soit $(\lambda_{1}, \dots, \lambda_{n+1})\in[0, 1]^{n+1}$ tel que $\lambda_{1}+\dots+\lambda_{n+1}=1$. Si $\lambda_{n+1}=1$ alors $\lambda_{1}=\dots=\lambda_{n}=0$ et l'inégalité est vérifiée. Si $\lambda_{n+1}\ne1$ alors $\lambda_{1}+\dots+\lambda_{n}=1-\lambda_{n+1}\ne0$ et on a: $$\begin{array}{rcl} f(\lambda_{1}x_{1}+\lambda_{n}x_{n}+\lambda_{n+1}x_{n+1}) & = & \ds f\left((1-\lambda_{n+1})\left[\frac{\lambda_{1}}{1-\lambda_{n+1}}x_{1}+\dots+\frac{\lambda_{n}}{1-\lambda_{n+1}}x_{n}\right]+\lambda_{n+1}x_{n+1}\right) \\ & \leqslant & \ds (1-\lambda_{n+1})f\left(\frac{\lambda_{1}}{1-\lambda_{n+1}}x_{1}+\dots+\frac{\lambda_{n}}{1-\lambda_{n+1}}x_{n}\right)+\lambda_{n+1}f(x_{n+1}) \end{array}$$d'après la proposition $\mathcal{H}(2)$ (ou la convexité).

Exemple Soit la fonction définie sur par. La fonction est convexe, donc est concave. Les meilleurs professeurs de Maths disponibles 5 (80 avis) 1 er cours offert! 4, 9 (110 avis) 1 er cours offert! 4, 9 (85 avis) 1 er cours offert! 5 (128 avis) 1 er cours offert! 5 (118 avis) 1 er cours offert! 5 (80 avis) 1 er cours offert! 4, 9 (66 avis) 1 er cours offert! 4, 9 (95 avis) 1 er cours offert! 5 (80 avis) 1 er cours offert! 4, 9 (110 avis) 1 er cours offert! 4, 9 (85 avis) 1 er cours offert! 5 (128 avis) 1 er cours offert! 5 (118 avis) 1 er cours offert! 5 (80 avis) 1 er cours offert! 4, 9 (66 avis) 1 er cours offert! 4, 9 (95 avis) 1 er cours offert! Inégalité de convexité exponentielle. C'est parti 2) Prouver une inégalité avec convexité - exercice d'application Avant de voir la vidéo de correction ci-dessous, vous pouvez vous essayer à l'exercice d'application suivant: Soit la fonction définie sur par a) Étudier la convexité de la fonction. b) Déterminer l'équation de la tangente à la fonction en. c) En déduire que pour tout réel négatif, on a: Vidéo Kevin - Application: Vous pouvez également retrouver le pdf du superprof ici: PDF Prouver une inégalité avec convexité Pour retrouver ces vidéos, ainsi que de nombreuses autres ressources écrites de qualité, vous pouvez télécharger l'application Studeo (ici leur website) pour iOS par ici ou Android par là!

Article connexe [ modifier | modifier le code] Inégalité d'Hermite-Hadamard Portail de l'analyse

Trouver Les Axes De Symétrie Ce2