August 1, 2024

On désigne par M M un point du segment [ A G] [AG] et t t le réel de l'intervalle [ 0; 1] [0~;~1] tel que A M → = t A G → \overrightarrow{AM} = t\overrightarrow{AG}. Démontrer que M I 2 = 3 t 2 − 3 t + 5 4 M\text{I}^2 = 3t^2 - 3t+\dfrac{5}{4}. Démontrer que la distance M I MI est minimale pour le point M ( 1 2; 1 2; 1 2) M\left(\dfrac{1}{2}~;~\dfrac{1}{2}~;~\dfrac{1}{2}\right) Démontrer que pour ce point M ( 1 2; 1 2; 1 2) M\left(\dfrac{1}{2}~;~\dfrac{1}{2}~;~\dfrac{1}{2}\right): M M appartient au plan ( I J K) (IJK). La droite ( I M IM) est perpendiculaire aux droites ( A G) (AG) et ( B F) (BF). Corrigé Les points I, J, C I, J, C et G G sont coplanaires. Pour placer le point L L, il suffit de prolonger les droites ( I J) (IJ) et ( G C) (GC). Les points K K et L L appartiennent tous deux aux plans I J K IJK et C D H CDH. L'intersection D \mathscr{D} de ces plans est donc la droite ( L K) (LK). Cette droite coupe le côté [ D H] [DH] en un point P P. La section du cube par le plan ( I J K) (IJK) a pour côtés [ I J], [ J K] [IJ], [JK] et [ K P] [KP].

  1. Géométrie dans l espace terminale s type bac pro
  2. Géométrie dans l espace terminale s type bac 3
  3. Géométrie dans l espace terminale s type bac le

Géométrie Dans L Espace Terminale S Type Bac Pro

Les trois autres côtés s'obtiennent en traçant les parallèles à [ I J], [ J K] [IJ], [JK] et [ K P] [KP]. On obtient ainsi un hexagone régulier I J K P Q R IJKPQR. Par lecture directe: A ( 0; 0; 0) A(0;0;0) G ( 1; 1; 1) G(1;1;1) I ( 1; 0; 1 2) I\left(1;0;\frac{1}{2}\right) J ( 1; 1 2; 0) J\left(1;\frac{1}{2};0\right) K ( 1 2; 1; 0) K\left(\frac{1}{2};1;0\right) Pour montrer que le vecteur A G → \overrightarrow{AG} est normal au plan ( I J K) (IJK), il suffit de montrer que A G → \overrightarrow{AG} est orthogonal à deux vecteurs non colinéaires de ce plan, par exemple I J → \overrightarrow{IJ} et J K → \overrightarrow{JK}. Les coordonnées de I J → \overrightarrow{IJ} sont ( 0 1 / 2 − 1 / 2) \begin{pmatrix} 0 \\ 1/2 \\ - 1/2 \end{pmatrix} et les coordonnées de A G → \overrightarrow{AG} sont ( 1 1 1) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}. I J →. A G → = 0 × 1 + 1 2 × 1 − 1 2 × 1 = 0 \overrightarrow{IJ}. \overrightarrow{AG}=0 \times 1+\frac{1}{2} \times 1 - \frac{1}{2} \times 1 = 0 Donc les vecteurs I J → \overrightarrow{IJ} et A G → \overrightarrow{AG} sont orthogonaux.

Géométrie Dans L Espace Terminale S Type Bac 3

Rechercher: ACCUEIL LYCÉE 2ème Année Bac 2Bac – Sciences Maths 2Bac – Sciences Exp 1ère Année Bac 1Bac – Sciences Maths 1Bac – Sciences Exp Tronc Commun COLLÈGE 3ème Année Collège 2ème Année Collège 1ère Année Collège L'ÉQUIPE BLOG Home / Lycée / 2ème Année Bac / 2Bac – Sciences Exp / Géométrie dans l'espace Cours Pour acquérir les bases Cours 1 Fr Cours 2 Fr Exercices Pour bien s'Entraîner Serie 1 Fr Serie 2 Fr Serie 3 Fr Contrôles Pour bien s'Approfondir Contrôle 1 Fr Contrôle 2 Fr Besoin d'aide ou de renseignements? Contactez nous

Géométrie Dans L Espace Terminale S Type Bac Le

Durée: 4 heures L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, "type collège" est autorisé. Le sujet propose 4 exercices. Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices. Chaque exercice est noté sur 7 points (le total sera ramené sur 20 points). Les traces de recherche, même incomplètes ou infructueuses, seront prises en compte. 7 points exercice 1 Thème: probabilités Chaque chaque jour où il travaille, Paul doit se rendre à la gare pour rejoindre son lieu de travail en train. Pour cela, il prend son vélo deux fois sur trois et, si il ne prend pas son vélo, il prend sa voiture. 1. Lorsqu'il prend son vélo pour rejoindre la gare, Paul ne rate le train qu'une fois sur cinquante alors que, lorsqu'il prend sa voiture pour rejoindre la gare Paul rate son train une fois sur dix. On considère une journée au hasard lors de laquelle Paul se rend à la gare pour prendre le train qui le conduira au travail.

On arrondira la probabilité cherchée à 10 -3. d. En moyenne, combien de jours sur une période choisie au hasard de 20 jours pour se rendre à la gare, Paul prend-il son vélo? On arrondira la réponse à l'entier. 3. Dans le cas où Paul se rend à la gare en voiture, on note T la variable aléatoire donnant le temps de trajet nécessaire pour se rendre à la gare. La durée du trajet est donnée en minutes, arrondie à la minute. La loi de probabilité de T est donnée par le tableau ci-dessous: Déterminer l'espérance de la variable aléatoire T et interpréter cette valeur dans le contexte de l'exercice. 7 points exercice 2 Thème: suites Dans cet exercice, on considère la suite ( T n) définie par: et, pour tout entier naturel 1. a. Démontrer par récurrence que, pour tout entier naturel b. Vérifier que pour tout entier naturel. En déduire le sens de variation de la suite ( T n). c. Conclure de ce qui précède que la suite ( T n) est convergente. Justifier. 2. Pour tout entier naturel n, on pose: a. Montrer que la suite ( u n) est une suite géométrique dont on précisera la raison.

Cochon De Lait Vannes