August 1, 2024

Exercice 1 On donne la représentation de la fonction densité de probabilité $f$ définie sur l'intervalle $[0;2, 5]$. $X$ suit une loi de probabilité continue de densité $f$. Déterminer graphiquement: $P(X<0, 5)$ $\quad$ $P(X=1, 5)$ $P(0, 5 \pp X \pp 1, 5)$ $P(X>2)$ $P(X \pg 1, 5)$ $P(X>1)$ $P(X>2, 5)$ $\quad Correction Exercice 1 On veut calculer l'aire d'un triangle rectangle isocèle de côté $0, 5$. Cours loi de probabilité à densité terminale s 4 capital. Donc $P(X<0, 5)=\dfrac{0, 5\times 0, 5}{2}=0, 125$ Quand $X$ suit une loi de probabilité à densité alors, pour tout réel $a$ on a $P(X=a)=0$. Ainsi $P(X=1, 5)=0$ Il s'agit de calculer l'aire d'un rectangle dont les côtés mesurent respectivement $1$ et $0, 5$. Ainsi $P(0, 5\pp X\pp 1, 5)=1\times 0, 5=0, 5$. Donc $P(X>2)=\dfrac{0, 5\times 0, 5}{2}=0, 125$ On veut calculer l'aire d'un trapèze rectangle. On utilise la formule: $\mathscr{A}_{\text{trapèze}}=\dfrac{(\text{petite base $+$ grande base})\times\text{hauteur}}{2}$. Ainsi $P(X\pg 1, 5)=\dfrac{(1+0, 5)\times 0, 5}{2}=0, 375$ On utilise la même formule qu'à la question précédente.

Cours Loi De Probabilité À Densité Terminale S Homepage

I La densité de probabilité On considère une expérience aléatoire et un univers associé \Omega, muni d'une probabilité P. Variable aléatoire continue Une variable aléatoire continue est une fonction X qui à chaque événement élémentaire de \Omega associe un nombre réel d'un intervalle I de \mathbb{R}. Loi de probabilité continue et densité de probabilité Soit f une fonction continue et positive ou nulle sur un intervalle I de \mathbb{R} telle que \int_{I}f\left(x\right) \ \mathrm dx = 1. Soit X une variable aléatoire continue sur \Omega. On dit que f est une densité de probabilité de X si, pour tout intervalle J inclus dans I: p\left(X\in J\right) =\int_{J}^{}f\left(x\right) \ \mathrm dx Considérons la fonction f définie sur \left[0;2\right] par f\left(x\right)=\dfrac{x}{2}: f est continue sur \left[0;2\right]. Cours loi de probabilité à densité terminale s programme. f est positive sur \left[0;2\right]. Une primitive de f sur \left[0;2\right] est la fonction F définie sur \left[0;2\right] par F\left(x\right)=\dfrac{x^2}{4}. Donc \int_{0}^{2} f\left(x\right) \ \mathrm dx=F\left(2\right)-F\left(0\right)=\dfrac44-0=1.

Cours Loi De Probabilité À Densité Terminale S Inscrire

V La loi normale générale Loi normale \mathcal{N}\left(\mu;\sigma^2\right) Une variable aléatoire X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right) ( \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+*}) si et seulement si la variable aléatoire \dfrac{X-\mu}{\sigma} suit la loi normale centrée réduite. Espérance d'une loi normale Si X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right), son espérance est alors égale à: E\left(X\right) = \mu Variance d'une loi normale Si X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right), sa variance est alors égale à: V\left(X\right) = \sigma^2 et son écart-type est donc égal à \sigma. Cours loi de probabilité à densité terminale s homepage. On observe que plus \sigma augmente, plus la courbe de la densité de la loi normale \mathcal{N}\left(\mu;\sigma^2\right) est "aplatie". De plus, cette courbe est centrée sur la moyenne, c'est-à-dire symétrique par rapport à la droite d'équation x=\mu. Si \mu=0 et \sigma=1, on retrouve la courbe de Gauss normalisée, soit la loi normale centrée réduite. Si X suit la loi normale \mathcal{N}\left(\mu;\sigma^2\right), on a les valeurs remarquables suivantes: p\left(\mu - \sigma \leq X \leq\mu + \sigma\right) \approx 0{, }683 p\left(\mu - 2\sigma \leq X \leq \mu + 2\sigma\right) \approx 0{, }954 p\left(\mu - 3\sigma \leq X \leq \mu + 3\sigma\right) \approx 0{, }997 N'ayant pas de primitive de la fonction de densité correspondant à une variable aléatoire suivant une loi N\left(\mu;\sigma^2\right), on a besoin de la calculatrice pour déterminer des probabilités d'événements.

La fonction définie sur par est une densité de probabilité. Définition: loi exponentielle de paramètre Soit un nombre réel strictement positif. Une variable aléatoire à densité suit la loi exponentielle de paramètre si sa densité est la fonction définie sur par: Densité de probabilité de la loi exponentielle de paramètre Remarque. Le paramètre est égal à l'ordonnée du point de la courbe représentant la densité situé sur l'axe des ordonnées car. Loi à densité : Terminale - Exercices cours évaluation révision. Soit une variable aléatoire à densité qui suit la loi exponentielle de paramètre. Quels que soient les nombres réels positifs et, on a: Pour tout réel positif, on a: Définition: espérance d'une loi exponentielle On définit l'espérance d'une variable aléatoire suivant la loi exponentielle de paramètre en posant: L'espérance d'une variable aléatoire suivant la loi exponentielle de paramètre est telle que: Propriété: durée de vie sans vieillissement Une variable aléatoire qui suit une loi exponentielle est telle que, pour tous réels et positifs, on a: Cette propriété est appelée propriété de durée de vie sans vieillissement.

Bibliothèque Doué La Fontaine