July 31, 2024

1) $(u_n)$ est la suite définie pour tout entier naturel $n$ par $\displaystyle{u_n = \frac{n}{3^n}}$. 2) $(u_n)$ est la suite définie pour tout entier naturel non nul $n$ par $\displaystyle{u_n = n + \frac{1}{n}}$. Exercices 2: Variations d'une suite du type $u_n = f(n)$ Les suites ci-dessous sont définies par une relation du type $u_n = f(n)$. Dans chaque cas, préciser $f$, étudier ses variations sur $[0~;~+\infty[$ et en déduire les variations de la suite. 1) $u_n = 5-\dfrac{n}{3}$ 2) $u_n = 2n^2 - 7n-2$ 3) $\displaystyle{u_n = \frac{1}{2n+1}}$ Exercices 3: Variations d'une suite à l'aide de $\dfrac{u_{n+1}}{u_n}$ On admet que les suites ci-dessous ont tous leurs termes strictement positifs. En comparant le quotient $\dfrac{u_{n+1}}{u_n}$ à $1$, étudier le sens de variations des suites. 1) Pour tout entier $n$ avec $n\geqslant 1$, $u_n = \dfrac{3^n}{5n}$. 2) Pour tout entier $n$ avec $n\geqslant 1$, $u_{n+1} = \dfrac{8u_{n}}{n}$ et $u_1 = 1$. Exercices 4: Variations d'une suite à l'aide de deux méthodes différentes Démontrer en utilisant deux méthodes différentes que la suite $(u_n)$ définie pour tout entier naturel $n$ par $u_n= n^2 - 10n$ est monotone à partir d'un certain rang (que l'on précisera).

  1. Sens de variation d une suite exercice corrigé du
  2. Sens de variation d une suite exercice corrigé le
  3. Sens de variation d une suite exercice corrigé du bac

Sens De Variation D Une Suite Exercice Corrigé Du

Cours de Première sur le sens de variation d'une suite Définitions La suite u est croissante si, et seulement si, pour tout n, La suite u est strictement croissante si, et seulement si, pour tout n, La suite u est décroissante si, et seulement si, pour tout n, La suite u est strictement décroissante si, et seulement si, pour tout n, La suite u est constante si, et seulement si, pour tout n, Une suite est monotone si elle est soit croissante, soit décroissante, soit constante. Méthodes pour étudier le sens de variation d'une suite Méthode 1 On étudie le signe de la différence: Si pour tout n,, la suite u est croissante. Si pour tout n,, la suite u est décroissante. Méthode 2 Si la suite u est définie à partir d'une fonction f connue, c'est-à-dire que, pour tout entier n,, alors elle a le même sens de variation que f sur. Méthode 3 Si tous les termes de la suite sont strictement positifs, on compare le quotient au nombre: Si pour tout n,, alors la suite u est croissante. Si pour tout n,, alors la suite u est décroissante.

Sens De Variation D Une Suite Exercice Corrigé Le

Calculer les deux premiers termes de cette suite. Étudier le sens de variation de la suite $\left(u_n\right)$. Correction Exercice 3 $u_1=\dfrac{1}{1^2}=1$ et $u_2=\dfrac{1}{1^2}+\dfrac{1}{2^2}=\dfrac{5}{4}$ $\begin{align*} u_{n+1}&=\displaystyle \sum_{i=1}^{n+1} \dfrac{1}{i^2}\\ &=\sum_{i=1}^n \dfrac{1}{i^2}+\dfrac{1}{(n+1)^2}\\ &=u_n+\dfrac{1}{(n+1)^2} Donc $u_{n+1}-u_n=\dfrac{1}{(n+1)^2} > 0$ Exercice 4 On considère la suite $\left(u_n\right)$ définie par $\begin{cases} u_0=3\\u_{n+1}=\dfrac{u_n}{n+2}\end{cases}$. On admet que pour tout entier naturel $n$ on a $u_n>0$. Étudier les variations de la suite $\left(u_n\right)$. Voici un algorithme qui calcule et affiche les termes $u_1$, $u_2$, $\ldots$, $u_{12}$: Variables: $\quad$ $i$ et $u$ sont des nombres Traitement et sortie: $\quad$ $u$ prend la valeur $3$ $\quad$ Pour $i$ allant de $1$ à $12$ $\qquad$ $u$ prend la valeur $\dfrac{u}{i+2}$ $\qquad$ Afficher $u$ $\quad$ Fin Pour Modifier cet algorithme pour que celui-ci demande à l'utilisateur de choisir un nombre $n$ et pour qu'il affiche uniquement la valeur de $u_n$.

Sens De Variation D Une Suite Exercice Corrigé Du Bac

Objectifs Découvrir la notion de sens de variation pour les suites. Étudier le sens de variation d'une suite arithmétique ou géométrique. Pour bien comprendre Suites arithmétiques Suites géométriques 1. Monotonie d'une suite 2. Sens de variation d'une suite arithmétique ou géométrique a. Suites arithmétiques Une suite arithmétique est croissante lorsque. Une suite arithmétique est décroissante lorsque. Exemple La suite (u n) définie par avec u 0 = 1 est une suite arithmétique de raison r = –3 donc décroissante sur. b. Suites géométriques Soit ( u n) une suite géométrique de premier terme u 0 positif de raison q. ( u n) est croissante lorsque ( u n) est décroissante La suite ( u n) définie par avec u 0 = 4 est une suite géométrique de raison avec u 0 > 0. Comme, la suite ( u n) est Remarque Si u 0 < 0, les variations sont inversées. Vous avez déjà mis une note à ce cours. Découvrez les autres cours offerts par Maxicours! Découvrez Maxicours Comment as-tu trouvé ce cours? Évalue ce cours!

Découvrez les autres cours offerts par Maxicours! Découvrez Maxicours Comment as-tu trouvé ce cours? Évalue ce cours! Note 2. 9 / 5. Nombre de vote(s): 90
Tour Du Monde 2016 Blog